Search results for "visual saliency"
showing 10 items of 23 documents
Visual saliency detection in colour images based on density estimation
2017
International audience; A simple and effective method for visual saliency detection in colour images is presented. The method is based on the common observation that local salient regions exhibit distinct geometric and and texture patterns from neighbouring regions. We model the colour distribution of local image patches with a Gaussian density and measure the saliency of each patch as the statistical distance from that density. Experimental results with public datasets and comparison with other state-of-the-art methods show the effectiveness of our method.
Combining Top-down and Bottom-up Visual Saliency for Firearms Localization
2014
Object detection is one of the most challenging issues for computer vision researchers. The analysis of the human visual attention mechanisms can help automatic inspection systems, in order to discard useless information and improving performances and efficiency. In this paper we proposed our attention based method to estimate firearms position in images of people holding firearms. Both top-down and bottom-up mechanisms are involved in our system. The bottom-up analysis is based on a state-of-the-art approach. The top-down analysis is based on the construction of a probabilistic model of the firearms position with respect to the people’s face position. This model has been created by analyzi…
On Spatio-Temporal Saliency Detection in Videos using Multilinear PCA
2016
International audience; Visual saliency is an attention mechanism which helps to focus on regions of interest instead of processing the whole image or video data. Detecting salient objects in still images has been widely addressed in literature with several formulations and methods. However, visual saliency detection in videos has attracted little attention, although motion information is an important aspect of visual perception. A common approach for obtaining a spatio-temporal saliency map is to combine a static saliency map and a dynamic saliency map. In this paper, we extend a recent saliency detection approach based on principal component analysis (PCA) which have shwon good results wh…
A Multi-Scale Colour and Keypoint Density-Based Approach for Visual Saliency Detection
2020
In the first seconds of observation of an image, several visual attention processes are involved in the identification of the visual targets that pop-out from the scene to our eyes. Saliency is the quality that makes certain regions of an image stand out from the visual field and grab our attention. Saliency detection models, inspired by visual cortex mechanisms, employ both colour and luminance features. Furthermore, both locations of pixels and presence of objects influence the Visual Attention processes. In this paper, we propose a new saliency method based on the combination of the distribution of interest points in the image with multiscale analysis, a centre bias module and a machine …
Saliency Map for Visual Perception
2015
Human and other primates move their eyes to select visual information from the scene, psycho-visual experiments (Constantinidis, 2005) suggest that attention is directed to visually salient locations in the image. This allows human beings to bring the fovea onto the relevant parts of the image, to interpret complex scenes in real time. In visual perception, an important result was the discovery of a limited set of visual properties (called pre attentive), detected in the first 200-300 milliseconds of observation of a scene, by the low-level visual system. In last decades many progresses have been made into research of visual perception by analyzing both bottom up (stimulus driven) and top d…
Physical Metaphor for Streaming Media Retargeting
2014
We here introduce an image/video retargeting method that operates arbitrary aspect ratios resizing achieved in real-time performances. Most of the literature retargeting approaches sacrifice real-time performances in behalf of quality. On the other hand, existing fast methods provide arguable results. We can obtain a valuable trade-off between effectiveness and efficiency. The method named Spring Simulation Retargeting (SSR) is mainly based on a physical springs-based simulation. The media are assumed as flexible objects composed of particles and springs with different local stiffness properties, related to the visual importance of the content. The variation of the object size generates ela…
Springs-based Simulation for Image Retargeting
2011
In this paper an efficient method for image retargeting is pro- posed. It relies onto a mechanical model based on springs network. Each pixel displacement (compression or expan- sion) is given by the network response, according to the springs stiffness. The properties of the springs are deter- mined as function of the visual relevance of the pixels. Such model does not require any optimization, since its so- lution is obtained simply from a linear system of equations, allowing real-time application even for large images. The approach is fully automatic, though can be improved by interactively providing cues such as geometric constraints and/or manual relevant object labeling. The results pr…
Saliency Based Image Cropping
2013
Image cropping is a technique that is used to select the most relevant areas of an image, discarding the useless ones. Handmade selection, especially in case of large photo collections, is a time consuming task. Automatic image cropping techniques may help users, suggesting to them which part of the image is the most relevant, according to specific criteria. We suppose that the most visually salient areas of a photo are also the most relevant ones to the users. In this paper we present an extended version of our previously proposed method, to extract the saliency map of an image, which is based on the analysis of the distribution of the interest points of the image. Three different interest…
Convolutional Neural Network for Blind Mesh Visual Quality Assessment Using 3D Visual Saliency
2018
In this work, we propose a convolutional neural network (CNN) framework to estimate the perceived visual quality of 3D meshes without having access to the reference. The proposed CNN architecture is fed by small patches selected carefully according to their level of saliency. To do so, the visual saliency of the 3D mesh is computed, then we render 2D projections from the 3D mesh and its corresponding 3D saliency map. Afterward, the obtained views are split to obtain 2D small patches that pass through a saliency filter to select the most relevant patches. Experiments are conducted on two MVQ assessment databases, and the results show that the trained CNN achieves good rates in terms of corre…
Visual saliency by keypoints distribution analysis
2011
In this paper we introduce a new method for Visual Saliency detection. The goal of our method is to emphasize regions that show rare visual aspects in comparison with those showing frequent ones. We propose a bottom up approach that performs a new technique based on low level image features (texture) analysis. More precisely, we use SIFT Density Maps (SDM), to study the distribution of keypoints into the image with different scales of observation, and its relationship with real fixation points. The hypothesis is that the image regions that show a larger distance from the mode (most frequent value) of the keypoints distribution over all the image are the same that better capture our visual a…